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We present a model of the weak interactions in which a custodial symmetry that 
is not an invariance of the starting Lagrangian emerges in the effective low-energy 
sector of the theory. This symmetry maintains the relation Mw = Mz cos 0w to 
all orders in the Higgs self-couplings to any required degree of accuracy, while 
leaving the quark mass spectrum completely unconstrained. The model is a local 
left-right symmetric chiral flavor gauge theory of the electroweak interactions 
in which the symmetry is spontaneously broken by fundamental Higgs fields 
which transform the same way under the chiral group as fermion Dirac and 
Majorana masses. 

1. I N T R O D U C T I O N  

The obse rva t ion  o f  neut ra l  currents  es tab l i shed  the va l id i ty  o f  the 
W e i n b e r g - S a l a m - G l a s h o w  theory  of  weak  in te rac t ions  (Weinberg ,  1967; 
Salam,  1968; G lashow,  1961). The expe r imen ta l  da t a  are conven ien t ly  
cha rac te r i zed  by  a p a r a m e t e r  

M w  (1) 
P - M z  cos 0w 

which  measures  the  re la t ive  s trengths o f  the  cha rged  and  neut ra l  currents .  
Here  Ow is the  Weinbe rg  angle  which  de te rmines  the a m o u n t  of  mix ing  
be tween  the two neut ra l  gauge  bosons  of  the  local  SU(2)L  • U(1)ws  gauge  
theory.  E x p e r i m e n t a l l y  p is found  to be  very close to I. The  very fact  that  
p is of  o rde r  1 ra ther  than  say of  o rde r  1 / a  a l r eady  indica tes  tha t  the  neut ra l  
currents  are  indeed  on  an equal  foot ing with  the  charged  ones,  with the  
expl ic i t  va lue  o f  p then  giving de ta i l ed  i n fo rma t ion  abou t  the  pa t t e rn  o f  
s p o n t a n e o u s  symmet ry  b reak ing  in the model .  

In  the  s t a n d a r d  m o d e l  app roach ,  for  ins tance,  where  the SU(2)L  x 
U(1)ws  symmet ry  is b r o k e n  by  a single comp le x  SU(2)L  Higgs double t ,  
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q54, the pure Higgs sector contribution yields for p the value 1, thus making 
the standard model breaking pattern both simple and in accord with experi- 
ment. The reason that this particular value for p is obtained in the standard 
model was identified by Susskind (1979) and by Weinberg (1976, 1979). 
They noted that the most general Higgs potential, V(&a), for a single 
complex Higgs doublet just happens to possess the higher six-parameter 
0(4)  symmetry of a real quartet of fields. With one of these real fields 
acquiring a vacuum expectation value the Higgs potential can only produce 
three Goldstone bosons. Thus after the breaking the potential must still 
possess a residual unbroken three-parameter global SU(2) symmetry. Under 
this residual or custodial SU(2) symmetry the three SU(2)L intermediate 
vector bosons transform as a triplet, so that the Higgs self-coupled sector 
(both tree approximation and radiative corrections) gives these three vector 
bosons degenerate Higgs mechanism masses. The mixing of the electrically 
neutral SU(2)L vector boson with the U(t )  ws gauge boson then yields p = 1 
for the all order pure Higgs sector contribution. 

The higher 0(4)  invariance of the input Higgs potential and the residual 
global SU(2) symmetry that survives the Higgs breaking are only exact as 
far as the Higgs sector is concerned, with both symmetries being broken in 
the couplings of the Higgs fields to the gauge bosons and fermions of  the 
model. Hence the gauge boson and fermion contributions cause p to deviate 
from 1. Fortunately, the gauge boson loop corrections start off in order c~ 
and are hence small, while, with the Yukawa couplings being of order 
mJ(Oa), i.e., of  order erny/Mw sin Ow, the currently known fermions only 
in fact give small contributions to p. Thus in the standard model the value 
of p is protected not just by the custodial SU(2) symmetry in the Higgs 
sector but also by the phenomenologically small fermionic contribution. 

To see just how sensitive the value of p is to the details of the 
symmetry-breaking mechansim we consider instead an SU(2)L • U(1)ws 
model which possesses not one but two fundamental complex Higgs doub- 
lets, ~ba and 4~b, say. Now the 0(4)  invariance of the ~ba self-coupled sector 
is broken directly in its couplings to 4~b SO that the most general Higgs 
potential is only SU(2)L x U(1)ws invariant and possesses no further sym- 
metry at all. Despite the absence of any such additional symmetry it turns 
out that the tree approximation Higgs sector contribution still yields p = 1. 
In higher orders, however, where the induced trilinear Higgs couplings are 
of order eM2/Mw sin Ow (MH being a typical Higgs mass), and where the 
lowest-order Higgs field wave function renormalization constant behaves 
like M~ 2, the radiative corrections to p start out in order e2M~/Mgw sin 20w, 
to give a value for p for which there is no known phenomenological bound. 
Moreover, we see that since the trilinear vertices grow with M~ ,  heavy 
Higgs bosons do not only not decouple from p, but rather they actually 
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cause p to grow with M 2 (i.e., with the Higgs quartic self-coupling con- 
stants) in a potentially uncontrollable manner. 

A slightly more constrained and commonly considered model with two 
complex SU(2)L Higgs doublets is that suggested by dynamical symmetry 
breaking, namely, the chiral flavor model in which the Higgs sector possesses 
a full global SU(2)L• •  invariance (B and L are, respec- 
tively, the baryon and lepton number generators). This model possesses an 
SU(2)L • U(1) ws subgroup where 

U(1)ws = TBR+(B-L)/2 (2) 

and also an electromagnetic st~bgroup with generator 

Sere = TL3 + T ~ + ( B - L ) / 2  (3) 

The symmetry breaking is effected by a fundamental Higgs field X which 
transforms according to the (2, 2*, 0)@ (2", 2, 0) representation of the chiral 
flavor group, i.e., like a fermion Dirac mass. The Higgs field X contains 8 
real components which can be written as 2 real irreducible 0(4)  quartets, 
viz., 

a = (O'o, ~rl, ~'2, ~'3) 
( 4 )  

(in the notation of the convenient or model), or as two complex SU(2)L 
doublets, viz., 

& a = (  O'o + i7r3 ) qSb=(cr3+iVro) 
\ iTrl -- "rr2/' \ 0"1 q- i0"2] (5) 

In the event that the Higgs sector breaking is such that O-o is the only 
component of X that acquires a vacuum expectation value, isospin remains 
unbroken and a residual global SU(2)L+R X ( B -  L) invariance survives the 
breaking. Giving a local extension to the SU(2)L x U(1)ws subgroup of 
SU(2)L X SU(2)R x ( B - L )  then provides just the right number of gauge 
bosons with just the right quantum numbers to absorb the three Goldstone 
bosons produced by the breaking pattern, with the residual unbroken global 
SU(2)L+R invariance then enforcing p = 1 to all orders in the Higgs potential. 

Characteristic of this mechanism is the presence of an additional global 
SU(2) invariance [either isospin or some other appropriate SU(2) (Sikivie 
et al., 1980)] already at the level of the input Higgs Lagrangian. Moreover, 
as we can see, the mechanism requires a rather delicate interplay between 
the local and global sectors of the theory. First, the symmetry-breaking 
potential must possess a global symmetry larger than that of the local gauge 
sector of the theory, and second the symmetry of the potential must only 
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be partially broken spontaneously so as to produce just the right number 
of Goldstone bosons with just the right set of quantum numbers required 
to give Higgs mechanism masses to just the right set of gauge bosons; while 
finally just the right residual global symmetry needed to enforce p = 1 must 
be left unbroken. 

Apart from requiring this detailed interplay between the local and 
global sectors of  the theory, the residual symmetry of this mechanism can 
also give rise to potentially undesirable mass formulas. In the simplest case, 
for instance, where the residual SU(2) is in fact isospin, the residual 
symmetry enforces the phenomenologically undesirable degeneracy of  the 
up and down quarks. Moreover, there are many current models of  the 
electroweak interactions which do not possess any such extra symmetry in 
the starting Lagrangian; and also others, such as the popular SO(10) 
grand-unified model of the strong, electromagnetic, and weak interactions, 
which while possessing a full SU(2)L • SU(2)R • (B - L) invariance, do so 
at the local rather than at the global level, so that the S U ( 2 ) L +  g group is 
then necessarily spontaneously broken. 

While much attention in the literature has been given to the problem 
of the quark mass degeneracy in models whose input Lagrangians possess 
an additional global symmetry which then survives the breaking (Sikivie et 
al., 1980; Dimopoulos and Susskind, 1979; Eichten and Lane, 1980; 
Dimopoulos et al., 1980), the question of the value of p in models without 
such additional input symmetries in the first place (a common phenomeno- 
logical situation) has not been adequately addressed. In this paper we shall 
resolve this latter question by presenting a model in which the full symmetry 
of the Higgs potential is the same as that of the local gauge sector of the 
theory, and in which the gauge sector (and hence the Higgs sector) is fully 
broken all the way down to electromagnetism. In the model an effective 
residual symmetry which is not an invariance of the starting Lagrangian 
will emerge in the low-energy structure of  the theory which will then keep 
p close to 1 while imposing no mass constraints on the fermions. Additional 
input global symmetries are thus not needed in order to obtain p = 1. 

The essence of our approach is to note that a single complex Higgs 
doublet, q~a, say, always possesses a higher O(4) symmetry in its own 
self-couplings (this we get for free as it were), with this higher symmetry 
then being broken at the level of the input Lagrangian in the couplings of 
4~a to the other Higgs fields of the model. If these other Higgs fields could 
be given large masses by the symmetry-breaking mechanism in a way which 
would simultaneously decouple all these other Higgs fields not just from 
~ba but also from the Weinberg-Salam gauge boson mass matrix, the higher 
4~a self-coupling 0(4)  symmetry would then be able to emerge and control 
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the effective low-energy structure of the theory. In this way the theory thus 
generates its own custodial symmetry and none need be supplied externally 
by hand by giving the Higgs sector some additional input symmetry. 

The requisite model which we shall present in this paper is the popular  
left-right symmetric local chiral flavor gauge theory of the electroweak 
interactions in which both the Higgs and gauge sectors are SU(2)LX 
SU(2)R x (B - L) invariant. The symmetry will be broken by fundamental 
Higgs fields which transform the same way under the chiral group as fermion 
bilinear Dirac and Majorana masses. We will find that the radiative correc- 
tions in this model are structured in a way which permits p to only deviate 
from 1 by a small controllable amount dependent on the relative strengths 
of the left-handed and right-handed currents of the local chiral theory (a 
strength ratio which is known to be small phenomenologically), with fermion 
mass ratios being completely unconstrained. 

Some of our results have already been presented in a note (Mannheim, 
1983), and in this paper we give the details. The present paper is organized 
as follows. We study first, in Sections 2 and 3, theories in which the local 
gauge sector is SU(2)L x U(1)ws invariant, but in which the associated 
Higgs sector is built out of fundamental Higgs fields which transform as 
fermion Dirac masses and possesses the larger global SU(2)L x SU(2)e x 
( B - L )  invariance. Unlike the situation considered in Susskind (1979) and 
Weinberg (1976, 1979) we shall break the Higgs sector symmetry down 
beyond isospin so that no residual SU(2) survives the breaking. Then the 
fermions are nondegenerate while p of course deviates arbitrarily from 1. 
Nonetheless we find (Section 2) that p does in fact equal 1 in the tree 
approximation despite the absence of any residual symmetry, so that it only 
deviates from 1 in higher orders (Section 3). Apart from thus failing to 
given an acceptable value for p, the model is also unsatisfactory in that the 
potential generates more Goldstone bosons than can be absorbed by the 
Weinberg-Salam gauge bosons. To eliminate these additional Goldstone 
bosons from the physical spectrum we must thus enlarge the gauge sector 
so that it then also possesses the chiral SU(2)L x SU(2)R x ( B -  L) invari- 
ance of the potential. To break this larger, parity-conserving theory we 
augment the Higgs sector by introducing parity violating fundamental Higgs 
fields which transform like fermion Majorana masses. In Section 4 we show 
how to break the local chiral theory so as to yield p of order 1 in the tree 
approximation, again without the need for a residual symmetry. Then finally, 
in Section 5, we study the radiative corrections in the local chiral model to 
find that this time there is an effective residual symmetry generated in the 
low-energy sector of theory which keeps p close to 1 as required with the 
fermion masses being completely unconstrained. 
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2. THE WEINBERG-SALAM MODEL WITH A CHIRAL HIGGS 
POTENTIAL IN THE TREE APPROXIMATION 

We begin our analysis with some general remarks on symmetry break- 
ing. We consider the gauge boson sector of the standard SU(2)L x U(1) ws 
Weinberg-Salam theory, viz. (dropping Lorentz indices), 

= gWL( 111 -- A~) + gWL( V2 - A2) + gWsC( Vs - A3) 

+ g' Wws(Jem - -  V3 + A3) (6) 

Here V~ and Ai (i = 1, 2, 3) are, resepectively, vector and axial-vector cur- 
rents, W~ (i = 1, 2, 3) form an SU(2)L triplet of vector bosons, Wws couples 
to the U(1) ws current of equation (2), and Jem is the electromagnetic current 
of equation (3). We introduce new basis states for the neutral sector 

A -  ( g ' W ~ + g W w s )  
(g2+g,2)l/2 

(7) 
g W ~ - g ' W w s  

Z L -  (g2+ g,2)1/2 

In terms of this basis we can rewrite the coupling of the gauge bosons to 
the currents as 

= g W~(( V~ - A~) + gW~(  V2 - A2) - g sin Ow(A + tan OwZL)J~m 

+ g sec OwZL( V3 - A3) (8) 

where we have introduced the Weinberg angle via 

g' 
tan Ow = - -  (9) 

g 

After the symmetry is broken spontaneously the potential will produce three 
Goldstone bosons Li (i = 1, 2, 3) of interest which couple to the left-handed 
currents with strengths 

(0[( V~ - a~) x [L~) = iq~F~ (1 O) 

Consequently the Higgs mechanism yields a set of gauge bosons with mass 
matrix 

M=�89189 L2 L2 1 2 2 W2) (F2) +~g see OwZ2L(FL) 2 (11) 

to lowest order in the gauge-coupling constants but to all orders in the 
symmetry-breaking potential. 

The above analysis is completely general and only depends on the fact 
that each broken SU(2)L•  U(l )ws  current has an associated Goldstone 
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boson. The analysis is independent  of whether the symmetry is broken 
dynamically or by fundamental Higgs fields, is independent of the initial 
symmetry of the potential, and is independent of how the various Goldstone 
bosons transform according to the symmetry group of the potential. Further 
restrictions come when we specify the group structure of the breaking 
pattern. We are interested here in the case where the symmetry-breaking 
potential is SU(2)c  x SU(2)R x ( B -  L) invariant with the breaking being 
according to the (2, 2", 0) |  (2", 2, 0) representation, X, of the chiral group. 
It is convenient to reexpress X in acr  model basis as 

1 (~?+ i'#) ~] (12) X = ~/-~[~ro + ilr0+ 

which contains two real irreducible quartets, a = (o'o, cry, ~r2, ~r3) and /3  = 
(Tro, o'1, ~2, G3). Classifying according to the SU(2)L X U(I)ws subgroup we 
see that X consists of two complex SU(2)L doublets each with a U(1)ws 
quantum number of 1/2. From the standard current algebra commutators 
we obtain the following useful relations: 

[ V 1 - A l ,  (O-o)'n- I -l- (G3) ( ] r2 ]  ~- [ V 2 - A 2 ,  (O'o) ~'2 - (~ r3 )c r , ]  

: [ I /3 - A3, (0"0) ~'3 + (or3)'W0] 

= i(G0)cr0+ i(o-3)~r 3 (13) 

We define the couplings of the Goldstone bosons L~ to these elements of 
X to be 

(L,l<~o)~, + <~3)~10) = zl/2E<~o)2+ <,~3)=3,/2 

<L21<O-o) ~-~ - ( ~ 5 ~ ,  I0) = Z~/Z[(~o): + (~35=] '/= (14) 

<G[<O-o> ~-~ + (o-35 ~,oI0) = z~/:[<O-o)= + (o-~5 ~] '/~ 

Saturating the vacuum expectation values of the relations of equation (13) 
with these Goldstone bosons yields 

F L71/2-  lz'LT1/2-- 12~L71/2--[<O'0)2+<O'3)2] 1 / 2  (15) 
1 ~ - 1  - -  a 2  I-.-, 2 - -  - - 3  z.~ 3 - -  

Thus the mixing parameter p is given by 

M ( W f )  E L ( / 3 ~  1 / 2  

P - c o s  OwM(ZL)- F3 L - \ ~ /  (16) 

and is now expressed in terms of the quantities Zi which refer explicitly to 
the (2, 2", 0 ) 0  (2", 2, 0) representation. Again the relation is exact to all 
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orders in the potential and independent of  whether the symmetry breaking 
is dynamical or fundamental.  

In terms of the above language the result of  Susskind (1979) and 
Weinberg ( 1976, 1979) is simply the statement that when isospin is unbroken 
(i.e. when (o-3)= 0) Z 1 and Z3 are equal, so p = 1. With the isospin being 
unbroken the fermions have to acquire degenerate masses. The starting 
point of  our present study is to note that the above analysis does not tell 
us by how much the gauge boson and fermion mass formulas deviate from 
their symmetry values when the isospin symmetry is not exact. According 
to the Goldberger-Tre iman relations the fermion masses are related to the 
various F~ by factors depending on the coupling constants of  the Li 
Goldstone bosons to the fermions. When isospin is broken these coupling 
constants are not equal. Thus the deviation of p from 1 is given by the 
deviation of Z1 from Z3, while the deviation of the fermion masses from 
exact degeneracy depends On the deviation of the various Goldstone boson 
to fermion coupling constants from each other. Thus we can decouple the 
value of p from the fermion mass ratio since the deviations of the Zi and 
the deviations of  the Goldstone boson to fermion coupling constants can 
in principle be uncorrelated. 

The simplest situation in which this explicitly happens is the tree 
approximation to a o- model with fundamental  Higgs fields. Specifically, in 
the o- model itself the quantities Z1 and Z3 are wave-function renormalization 
constants, and the fields in ~ and 13 are the Goldstone bosons themselves. 
In the tree approximation there is no renormalization so that Z1 and Z3 
both equal 1. Consequently Z~ and Z3 are equal to each other and thus 
p = 1. Moreover it is straightforward to construct a tree approximation 
minimum to the most general fundamental S U ( 2 ) L x S U ( 2 ) R X ( B - - L )  
invariant Higgs potential 

V(X) = - a  Tr X+X + b(Tr X+X) 2 

+ c Tr(x+X)2 + r[]det XI2+ Idet X+l 2] (17) 

in which both (o-0) and (o-3) are nonzero. Since the analysis leading to 
equation (16) did not depend on the specific values of  (o-o) and (0-3) we see 
that in the tree approximation p = 1 despite the absence of any residual 
SU(2)L+R symmetry. The fermion mass ratio is thus completely uncon- 
strained in the tree approximation,  and hence decoupled from the value 
of p. 

It is instructive to derive the above result in a slightly different manner.  
In the o- model we can express the currents directly in terms of the fields 
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in a and/3 ,  viz., 

( VI - a l ) x  = -0-0~A"B'I '~ 7J'2~A'W3 -~- 7/'0~A0-1 -~- 0-20"~A0-3 

( V2 - a2)x = -0-0~x77"2 d- 7T3 0"*A"B" 1 "~ 'B'O0"A0- 2 + 0-3~A0-1 

( V3 - Aa)x = -0-o~A ~r3 + 7r~ ~x~r2 + ~ro0*x0-3 + 0-1~x0-z" 

Defining 

(18) 

(0-0)'//'1 Jr- (0-3)0-2 
LI = [(0-o) 2 + (0.3)211/2 (19) 

and ana logous ly  for  L2 and  L3 then yields 

( V1 - A,)x - - [(0-o) 2 q~ (0.3)2]1/20xL1 (20) 

etc. af ter  t ranslat ing to the tree approx ima t ion  min imum,  so that  

F L = F L = S L = [(Oo)2 4_ ( o.3)211/2 (21 ) 

for  any values of  (0.o) and (o-3). As can be seen f rom equat ion  (18) the a 
and /3  contr ibut ions  are decoupled  f rom each other  in the V~ - A i  currents 
and thus act  as two separa te  complex  SU(2)L doublets .  Equa t ion  (21) is 
then just  the wel l -known result that two complex  doublets  (or any n u m b e r  
for  that  mat ter )  a lways give ideal p = 1 mixing in the tree app rox ima t ion  
to the W e i n b e r g - S a l a m  theory,  independen t  o f  their  relative or ientat ion to 
each other.  

Though  we have now obta ined  a nice limit in which p = 1 wi thout  a 
residual symmetry ,  in order  to take advantage  of  it we must  investigate the 
stability o f  the result unde r  radiat ive corrections.  As we shall now show the 
above 0- mode l  is unfor tuna te ly  unable  to main ta in  the relat ion p = 1 in 
higher orders.  (When (0-o) # (0.3) the above mode l  also produces  two more  
Golds tone  bosons  than  can be absorbed  by the W e i n b e r g - S a l a m  gauge 
bosons ,  a poin t  we shall resolve be low in Section 4.) 

3. RADIATIVE CORRECTIONS TO THE W E I N B E R G - S A L A M  
M O D E L  W I T H  A C H I R A L  H I G G S  P O T E N T I A L  

In this section we investigate the stabili ty of  the tree app rox ima t ion  
analysis against  radiat ive corrections.  Ra ther  than  per turb  a round  the most  
general  0-0, 0-3 breaking  pat tern  we can obtain  the result we require by 
working in a simplified s i tuat ion in which (0-3) = -(0-0) in tree app rox ima t ion  
(the fermions  are then nondegenera te ,  t hough  one is kept  massless).  This 
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will not  change  the na ture  o f  our  results  but  will make  the ca lcu la t ions  
more  s t ra igh t forward .  In  terms o f  the fields in o~ and /3  we define a new basis  

~+ = ~-~(o-0+ O-~), =+ = ~ ( ~ o +  ~ )  

1 
~- =~(o-o-  ~) ,  ~- =7~(~r0-- ~ )  

O-A= (O"1"{-17"2) , 7"/'A ~-~- ~ ( "/TI --  O-2 ) 

1 1 

(22) 

so that  we can  reexpress  the  poten t ia l  V ( X )  o f  equa t ion  (17) as 

V ( X )  _a[o2++o_2+ 2 2 2 e 2 2 _~. ,'iT + -di - *n'_ Oi- O ' A  "~ O- B -~ - ,g ' i 'A+ qT B ]  

+(b+ ,r 2+ 2+ 2 2+ 2+o-~+=~+ 212 C )L O-+ O-_ rr + + rr_ o'A 

- 2 ( c  - r)[o-+o-_ - ~-+Tr_ - OrAO" B -~ qTA'TTB] 2 

- 2 ( c  + r)[o-+ rr_ + O-_Tr+ - O-arrB - OrBq'g'A] 2 (23) 

We t rans la te  O-_ by p where  2(b + c ) p  2= a and  find a tree a p p r o x i m a t i o n  
m i n i m u m  in which  (o-_) = p ,  (o -+)  = 0. Af ter  t rans la t ing ,  the comple t e  quad-  

rat ic  te rm o f  V ( X )  is given by 

VQuad ( X ) = 4 ( b + c ) p Z o - Z _ - 2 ( c - r ) p 2 0 - 2 - Z ( c + r ) p 2 7 r Z +  (24) 

Thus o-_, o-+, and  ~r+ will acquire  posi t ive  squared  masses  if  b + c, - c  + r, 
and  - c  - r are  all  posi t ive.  Hence  our  m i n i m u m  is na tura l  in the  sense tha t  
it can be o b t a i n e d  for  a con t inuous  range  o f  pa ramete rs .  In  the  m i n i m u m  
7rA, O'A, 7r_, 7rB, and  o-n are  all  massless.  We rewri te  the currents  of  equa t ions  

(18) in the  new basis  

( V 3 - a3 )  x -- - o ' + ~ x ~  + + 0"_ 82-/;r_ - -  O'A~Aq'i" A JI- orBt~-~Aq'J" B 

(25) 

Thus these currents  are,  respect ively ,  d o m i n a t e d  by  rra, O-A, and  ~-_ with  
each one o f  these  G o l d s t o n e  bosons  possess ing  a tree a p p r o x i m a t i o n  coup-  
l ing to its a s soc ia ted  current  of  s t rength p, to reconf i rm tha t  p = 1 in t ree 
a p p r o x i m a t i o n .  Trans la t ing  to the new m i n i m u m  also induces  new t r i l inear  
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Fig. 1. One-loop tadpole contribution to the vacuum expectation value of 
the Higgs field. 

couplings, viz., 

Vtri(X)=4(b_l_c)po._[o.2++0.2_+ 2_ 4_ 2 - -  2 2 2 2 w+ 7r_-v erA+ r  r ra+ wB] 

-4(c  - r)po-+[ o-+ o-_ - 7r+ rr_ - Cracr B + "]TAqTB] 

--4(C + r)prr+[cr+rr_ + crrr+ -- craTr s -- o'srra] 

so we are now able to compute the radiative corrections. 

Approximate Weinberg Mixing 

(26) 

In one loop or_ acquires the tadpole contribution of Figure 1 through 
the induced trilinear vertices. We restabilize the vacuum by adding a 
chiral-invariant counterterm to the Lagrangian. After translating it takes 
the form 

-~A[cr_ +2po'_+p2+ zr+ zr_ 5Cc=1 2 2 2+ 2+ O.+ Ai_ r 1 6 2  2 2 q'/" A -1- "TTB] (27) 

and induces the graph of Figure 2. The choice 

A2 
A = (b8~r 2+ c) 10A2_3M2(o._ ) In M2(cr  ) 

A 2 A 2 ] 
-M~(~+)  In M2(o.+-- ~ M ~ ( w + ) l n ~  

A 2 ( c - r ) [ a 2 _ M 2 ( o . + ) l n ~ ]  (c+ r) [A2_ 12 
8r 2 87r 2 k M2(Tr+) In M2-~+) ] 

(28) 

\ 

Fig. 2. Linear counterterm which restabilizes the vacuum. 
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Fig. 3 

0 
Contribution of the trilinear couplings to the Goldstone boson propagator in one loop. 

then enables Figure 1 to cancel against Figure 2 (both infinite and finite 
parts) so that (o-_) remains equal to p. At the same time we find that the 
tadpole graphs for o-+ and all the other fields all vanish identically. In one 
loop the Goldstone boson propagators acquire both the trilinear contribu- 
tions of Figure 3 and the quartic contributions of Figure 4. Though these 
contributions are divergent we find that the counterterm of equation (27) 
induces just the right amount in Figure 5 to not only cancel these divergences 
but to also bring the masses of all of the five 7rA, Cra, ~'_, ~'B, and o'B back 
to zero. Thus one counterterm is sufficient to maintain the Goldstone 
theorem in one loop. 

The Goldstone boson propagators also undergo wave-function renor- 
malization. Since only Figure 3 involves nonzero momentum entering the 
loop and since its graphs are only logarithmically divergent, the wave- 
function renormalization is completely finite. We shall refer to the renor- 
malization constants of "/TA, O'A, and 7r_ as Z1, Z2, and Z3, respectively. 
Evaluating through one-loop order then gives 

(b + c)2p 2 (c - r)2p 2 
Z l  I = Z 2 1  = 1 q rr2M2(o.  ) + 4,a.2M2(o.+) 

and 

(c + r)2p 2 

+ 4~.2M2(Tr+ ) (29) 

(b + c)2p 2 r2p 2 

Z~'  = 1 q 7reM2(cr_) ~ ~.2[M2(0.+ ) _ M2(~.+)] a 

M2(~ 1 • [ M 4 ( o ' + ) -  M 4 ( T r + ) -  2MZ(o-+)M2(Tr+) In M2(~.+) j (30) 

Fig. 4. Contribution of the quartic couplings to the Goldstone boson 
propagator in one loop. 
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Fig. 5. Goldstone boson mass renormaliz- 
ation counterterm. X 

Using equation (24) for the explicit mass values gives 

b 
Z l  I = Z 2 1  = 1 -t 8Ir2 

b ( c 2 - r  2) [c+r'~ 
2 3 1 =  1 + ~ 2 + ~ l n ~ _  r ) (31) 

so that Z~ and Z3 are indeed different, as is to be expected in the absence 
of any residual symmetry. 

In order to determine the gauge boson mass shifts we calculate the 
vacuum polarizations. We note that if the source of a gauge boson is J [ ,  
after translating the source will become J~+pO~Li. Consequently in one 
loop the vacuum polarization receives contributions from the graphs of 
Figures 6-9. The contributions of Figure 6 are due to the renormalization 
of the Goldstone boson propagator,  while those of  Figures 7 and 8 involve 
vertex corrections to the coupling of the Goldstone bosons to the currents. 
The Goldstone boson pole terms of Figures 6-8 all contribute to the %q~/q2 
term of the vacuum polarization while Figure 9 contributes to the g,v term 
to restore current conservation. The pole term contributions of  Figures 6-8 
are readily calculated. For VrA the tree approximation pole contribution to 
the vacuum polarization of ( V l - A s )  is 

, _ _ p 2 % q ~  (32)  ~ v  -- q2 

while the one-loop contribution due to the renormalization of the ~'A 
propagator  in Figure 6 gives an additional contribution 

1 _2  % q ~ ,  �9 ~,~= -F  ---~-~ x - Z11) (33) 

Fig. 6. Goldstone boson propagator renormalization contribution to the vacuum polarization. 
The shaded blob contains the graphs of Figures 3, 4, and 5. 
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Figs. 7 and 8. 

@ l tVWr 

vV47v  

Contribution to vacuum polarization due to the vertex correction to the coupling 
of a Goldstone boson to its associated current. 

The vertex corrections o f  Figures 7 and 8 are each found  to yield 

rrl _ _ 2 % q ~ ,  , ~ - / J  - - ~ - t  I - Z ~  -I) (34) 

There is thus a Ward identity equivalence between the Golds tone  boson  
wave funct ion renormalizat ion and its current vertex correction. [This pro- 
vides a nice check on our  explicit calculations since the Feynman diagrams 
in Figures 3 and 7 that we calculated to obtain equations (29) and (34), 
respectively, are completely different.] Then adding together the tree graphs 
and the one- loop  contributions of  Figures 6-8 yields a pole term 

1 _ _2q~q~z-1  -7- , (35) 

so that 

M e ( W e )  = g2p2ZT '  (36) 

Fig. 9. Non-Goldstone boson contributions 
to the vacuum polarization. 
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A similar analysis for the vacuum polarization of (V3-A3)  yields 

3 __ _2q~,q,,,7-1 
q'l" v - - - - p  T L 3  

so that 

(37) 

cos 20wM2(ZL) = g2p2Zj' (38) 

With ZI and Z3 given in equations (31) we thus find that p deviates 
from 1 by an amount  dependent  on the unknown parameters of  the 
potential. We note that the above radiative corrections actually numerically 
only yield a 1% or so deviation for p from 1 in the event that the 
dimensionless parameters b, c, and r are themselves of order 1. Even though 
this may not be an unrealistic expectation, the basic difficulty with it is that 
we have no control on the values of the parameters. Consequently the 
present model has no apparent  rationale for having p near 1, and we shall 
instead turn to another model in which the radiative corrections are under 
control. 

4. LOCAL CHIRAL WEAK INTERACTIONS IN THE TREE 
A P P R O X I M A T I O N  

We begin our analysis with some general remarks on symmetry breaking 
in local chiral SU(2)L X SU(2)~ • (B - L) gauge theories. The gauge boson 
sector is given by 

~= gWf( V, - A~) + gW~( V2- Az) + gW~( V3 -A3)  

+ gWR( V, + A,) + gW~( V2 + A2) + gW3R( V3 + A3) 

-~- g '  W0[Jem - ( V3 - A3) - ( V3 + A3)] (39) 

Here W~ (i = 1, 2, 3) form an SU(2)R triplet of  vector bosons to accompany 
the W~ of Section 2, and Wo couples to the ( B - L )  current of  equation 
(3). It is convenient (Mannheim, 1979, 1980) to define a new basis for the 
neutral sector 

A = - s i n  Ow( W~ + W~ + g Wo) g'  

Z L = c O s O w W 3 - s i n O w t a n O w  W3 R+ Wo (40) 

ZR = t a n  Ow(~ W3 R- Wo) 
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where we have introduced the Weinberg angle this time via 

- - g P  

tan Ow - (g2+g,2),/2 (41) 

In terms of these basis states we can rewrite the couplings of the gauge 
bosons to the currents in the form 

s = gW~( V, - a , )  + gWR( V, + a l )  

+ gW~( V2 - az)  + g w R (  V2 + a2) 

- [ g  sin Ow(A +tan OwZL)+ g' tan OwZR]Jcr. 

+[g  see OwZL+g' tan OwZR](V3-AB) 

+ g'cot OwZR( V3 + a3) (42) 

After the symmetry is broken down to electromagnetism the theory will 
produce a total of six Goldstone bosons. They will be the three Li introduced 
previously and three new Ri which couple to the right-handed currents as 

(0[( V~ + A~)A [Ri) = iq;~F~ (43) 

Now in general the L~ Goldstone bosons can also couple to V~ + A~ while 
the R~ bosons can also couple to V~- A~, with respective strengths 

(0[( V,. + A,)~ [L~) = iq;~P~ 
(44) 

(0[( Vii - A,)hIR,) = iqxQ~ 

This in general the Higgs mechanism yields a gauge boson mass matrix 

M = �89 WfW (#CP, + F Q,) 
} 2 L 2  L 2  (w2) '- R W2 W2 (F2 e2+ F2RQ2) 

2 R 2 +�89 sec OwZL+ g' tan OwZR)2(FL)2+�89 '2 cot 20wZR(F3 ) 

+ (g sec OwZt+ g' tan OwZR)g' cot OwZR(FLp3 + F~Q3) (45) 

As can be seen from equations (39) and (45) breaking only according 
to the Dirac mass term X does not by itself lead to a mass matrix in which 
W L, W~, and ZL are light. (Rather, the pseudoscalar Goldstone bosons 
couple to the axial vector currents to diagonalize the gauge boson mass 
matrix in the W E -  W R basis.) Thus in local chiral theories of the weak 
interactions the analysis of Susskind (1979) and Weinberg (1976, 1979) does 
not by itself lead to anything like the Weinberg-Salam phenomenology. To 
proceed further we instead note from equation (45) that in the event that 
the F R are very large the gauge bosons W R, W~, and Za will acquire large 
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masses to leave over an approximate low-lying SU(2)Lx  U(1)ws sector 
with mass matrix 

M 1 2 L 2  L 2  1 2 L 2  L 2  =~g ( W l )  (F1) ..~ +�89 2 L : ~g (W2) (F2) sec 20wZL(F3) (46) 

Then as in Section 2 

P = F---( (47) 

only this time up to a small amount of  mixing between the left- and 
right-handed gauge bosons. Thus equation (47) can also emerge in local 
chiral theories, only now as an approximate rather than an exact relation. 

An explicit breaking pattern which realizes equation (46) has recently 
been presented in the literature (Mannheim, 1979, 1980), and it is a breaking 
which is also based on fermion bilinears, namely, Majorana mass breaking. 
Fermion Majorana masses transform as A R = (1, 3, - 2 )  and A L = (3, 1, - 2 )  
under SU(2)L • •  Thus difermion states carry a definite 
helicity (in contrast to Dirac masses which contain both left- and right- 
handed helicities), and also carry two units of fermion number  (the particle- 
antiparticle Dirac mass has zero fermion number).  Of the available difer- 
mion states there is only one electrically neutral one, the dineutrino, whose 
B - L quantum number  is -2 .  I f  we gave a vacuum expectation value to a 
fundamental  Higgs field which transforms like a dineutrino Majorana mass 
AR under the chiral group we then break parity, and also break SU(2)R 
and lepton number,  but do not break SU(2)L or electric charge. Hence, 
according to equations (2) and (3), we precisely break the chiral group 
down to the Weinberg-Salam group. Thus right-handed Majorana mass 

b r e a k i n g  reduces the local chiral theory to a low-lying Weinberg-Salam 
symmetry in a compact  and very elegant manner. Thus a large value for 
(AR) leads to large values for the F R of equation (43). Finally, with the 
right-handed sector now heavy, the subsequent effect of  X is to then give 
masses to the Weinberg-Salam gauge bosons while only mixing them a 
little with the heavier right-handed gauge bosons. Thus if (AR) is very much 
greater than (X) we will recover equations (46) and (47) to order (x)Z/(AR) 2. 

We note that while the above general analysis has the desired structure 
the actual value of p is not yet constrained, and p could in general be very 
different f rom 1. To proceed further requires an explicit model. Because 
the AR term reduces the theory to an approximate  Weinberg-Salam model 
we see immediately that a fundamental  Higgs field X will act in the tree 
approximation just as it did in the model studied in Section 2. Hence we 
will again find that F~ and F~ are equal in tree approximation for any 
values of  (0-0) and (0"3). A convenient way to show this is to construct the 
gauge boson mass matrix via minimal coupling for fundamental  Higgs fields 



522 Mannheim 

~ R ,  AL~ and X. Being products of fundamentals these fields have straightfor- 
ward transformation properties which are best illustrated in a tensor nota- 
tion. We shall use Latin indices (a, b . . . =  1, 2) to describe SU(2)L tensors 
and Greek indices (a, f l , . . .  = 1, 2) to describe SU(2)R tensors. In a tensor 
notation the gauge-covariant derivatives are 

0 A A c R  �9 R R �9 R R . , R - zg (W~) ,  A rt3 -- tg( W~r)AA~.~+2tg ( Wo)~,A,~t3, 
O A AaLb �9 L L L _tg(Wac)~Acb_ig(W~c),Aac+2ig, ( L W0)aAab, (48) 

�9 L �9 R 

Allowing the electrically neutral A RI, ALl, XII, and X22 t o  acquire vacuum 
expectation values gives [after using equation (12)] a tree approximation 
gauge boson mass matrix 

g' 

+�89 ~ ~ w ,  ) + ( w 2  - w ~ ) ~ + ( w ~  - w~)  ~] 

+ lg2(o-3)2[( WIL+ WIR)2+ ( W~+ W~)2+ ( W ~ -  W~) 2] (49) 

Then in the limit 

( A  IRI> >> (((TO) , (0"3) )  >> ( A l l )  ( 5 0 )  

we obtain all the usual Weinberg-Salam phenomenology (Mannheim, 1979, 
1980) with 

p = l + O{ 
(0"o) ~ (0"3) 2 (a~) 2] 

\(A,~)~' (AR) 2' (0"o> ~ ' - ( ~ y /  (51) 

Reexpressing p as 

o(M2(W~)'~ ~[M2(Zr)\  
p = l +  \ M 2 ( W R ) j = I + u ~ ~ )  (52) 

we see that in the tree approximation to a chiral theory p only deviates 
from 1 by a small controllable factor dependent on the relative strengths 
of the Charged or the neutral left- and right-handed currents of the theory. 
This small factor is controllable in the sense that it depends on the 
dimensionful parameters of the symmetry-breaking potential rather than 
on the dimensionless ones, so it is directly fixed by the symmetry-breaking 
scales of the theory. Thus the breaking pattern of equation (50) which we 
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already need to control the charged sector of the theory will then automati- 
cally control the neutral sector as well according to equation (52). 

Noting, finally, that we can obtain equation (52) above for any values 
of (o-o) and (or3), we see that the fermion masses are unconstrained and free 
to be unequal. Moreover, with the fermion masses being unequal, the theory 
will produce more Gotdstone bosons than can be absorbed by the SU(2)L • 
U(1) ws gauge bosons alone, a difficulty we alluded to earlier. We now see 
that in the local chiral theory we have just the right number of gauge bosons 
to remove these additional Goldstone bosons, since the symmetry of the 
gauge sector is the same as that of the potential. In this case there can be 
no residual global symmetry following the breaking, and hence we obtain 
equation (52) without a residual symmetry at all. Thus p will be close to 1 
in the tree approximation to a chiral theory provided only that the breaking 
pattern satisfies equation (50). In order to take advantage of this nice result 
we now study the stability of our analysis against radiative corrections. 

5. RADIATIVE CORRECTIONS TO LOCAL CHIRAL WEAK 
INTERACTION MODELS 

In this section we investigate the stability of the tree approximation 
structure of the local chiral theory against radiative corrections. Rather than 
perturb around the most general tree approximation minimum we shall, 
just as in our discussion in Section 3, be able to obtain the result of interest 
by picking a simpler minimum. We consider a fundamental Higgs model 
with fields X, AR, and AL. The most general remormalizable SU(2)L• 
SU(2)R • ( B - L )  invariant potential for these fields is 

v ( x ,  A) = V ( X )  - d ( T r  § * ALAL+Tr ARAR) 

+ e[(Tr + 2 ALAL) + (Tr AZAR)2]+f[Tr(A~AL)2+Tr(AZAR) 2] 

+ h(Tr AZAL)(Tr A~AR) + kETr x+xA+LAL+Tr xx+A;AR] 

+ I(Trx+x)[Tr A~AL+Tr A;AR] (53) 

where V(X) is given in equation (17). For X we shall again use the basis 
of equation (22), while for AL we define 

Af l  = ~IL -[- i~L 

1 
A f2 = ALl = ~( ' l 'L '~-  ieL) (54) 

A~2 = aL + iflL 
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and analogously for AR. The left-handed currents associated with X are 
already given in equation (25). The additional currents associated with AL 
are 

( v, - A,)~ : , 5 [ - ~ L Y ~ L  + 8L b'~ ~L-- ~LS"~L + & b'~ ~d 

( V2 -A2)A = ~ [  7LO-~A 7L-1- ~ L ~ E L -  OlL~A"g L -- ~L~AEL] (55) 

( y3 -  A3)~ = 2[ -  n Y ~ L  + ~Lb'~&] 

The right-handed currents associated with X are 

(v2+m2)x  = o-+ 0"xoA + ~'.  ~ ~rA -- o_ 0"ao-s -- Zr-~A~B (56) 

( v3 + m3)~ : ~+ ~ '~§  - o_  ~ ' ~ _  - o~ b'~A + ~ L ~  

and those, associated with AR are 

( Yl + AI)A = X/2[--'YR~AeR -b 8R~AT R -- OtR'O;te n d- flR~ATR] 

( Vz+ A2)~ = ~/-2[yR~A'rR + 6 R ~ e R - - a R O ~ ' R - - ~ R ~ e R ]  (57) 

( Va + A3)~ = 2 [ -  7R ~,6R + ag O~flR] 

We seek a minimum in which we translate t r  by p and Yg by t (i.e., 
we simplify by taking (o0) = -(o3)  and (YL) = 0). The vanishing of the terms 
linear in the fields in the translated theory requires 

[4(b + c)(e + f )  - /2]p2 = 2(e + f ) a  - ld 
(58) 

[4(b + e)(e + f )  - /2]t2 = 2(b + c)d - la 

and has real solutions for p2 and t 2 if 4 ( b + c ) ( e + f ) >  12. Further, t: will 
be much larger than p2 if d >> a and (b + c)d  >> (e +f)a .  In the translated 
theory the complete quadratic term in the potential takes the exact form 

V~(x,a)=' = = ' ~ ~MRR +~MsS +(kt2-2cp2+2rp2)~2 

+ (kt  2 - 2 cp 2 _ 2 rp 2) Ir2+ + �89 + 2 t 2) (j2 + L 2) 

+ (kp 2 - 2ft2)(c~ + 8 2) + (h - 2 e  - 2f)  t2(y2t+ 62L) 

+[ (h  - 2 e  - -2f)  t2 + lkp2](e2t + r2L) 

+[ (h  =2e  - 2f) t2 + kp2](a~+ fl 2) (59) 
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Here the mass eigenstates are defined as 

J = (p.cR+x/-2to-13)/(p2+2t2) 1/2 

L = (per  + ,/~ t~B) / (p2  + 2t 2) ,/2 

R = cos 0or  + sin OyR 

S = - s in  0or_ + cos OyR 

where 

(6o) 

/pt 
tan 2 0 - [( b + c)p 2 - ( e + f )  t 2] (61 ) 

and the R, S mass eigenvalues are 

M~ = 4(b + c)p 2 + 4(e + f )  t 2 + 4{[(b + c)p 2 - (e + f )  t2] 2 + 12p 2 t 2} 1/2 
(62) 

M 2 = 4(b + e)p 2 + 4(e + f )  t 2 - 4{[(b + c)p 2 - (e + f )  t2] 2 + 12p 2 t 2} 1/2 

All of the 14 fields in equation (59) will have positive squared masses if, 
essentially, b, k, and h are large, so again our minimum is natural. There 
are 6 Goldstone bosons produced in the minimum, namely, o'a, ~'A, ZC_, gR, 
M and N, where 

M = ( - . , /2 t ' cR+po'~) / (p2+Zt2)  ~/2 
(63) 

N = ( -~/2t~R +p~r~)/(p2+2t2)  ~/2 

This is just the set needed to break the theory down to electromagnetism. 
From equations (25), (56), and (57) we identify the translated parts of 

the currents in the tree approximation minimum as 

(V l - -A~)~ - -pO~rrA ,  ( V ~ + A , ) ~ ( p 2 + 2 t z ) ' / 2 O x N  

(V2-  Az)a ----pOx~rA, (V2+ A2)x ~ - ( p 2 + 2 t 2 ) l / 2 0 x M  (64) 

(V3-  A3)x ~pOxTr_, (V3+ A3)x - - -pOxrr_-2tOx6R 

Hence from equation (45) we obtain a gauge boson mass matrix 

L 2  1 2 2 2 R 2 M=�89  ]+sg  (p +2 t  )[(W, ) +(WzR) 2] 

+ l ( g  sec OwZL + g' tan OwZR)Zp2 +�89 '2 cot 20wZZ(pZ+4t  2) 

- ( g  see OwZL+ g' tan OwZR)g' cot OwZRp 2 (65) 

Thus when t 2 >> p2 the Weinberg-Salam phenomenology indeed follows with 
( p -  1) being of order p2/ t  2 in the tree approximation as required. 

Translating to the tree approximation minimum also induces a host of 
trilinear couplings, which we write in the initial basis for convenience, viz., 
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Vtri(X, A) = V t r i ( X ) + 4 ( e + f ) t y R [ y 2  + 6 2  + e  2 +rR+aR+fiR]2 2 2 

_ 4 f t y R (  aeR + f12 ) + 4ftflReRrR + 2 f taR(  r2R -- e 2)  

+ 2h~,Rtb4 + *~+ d +  ~-~_+ a ~ +  r 

+2tpo-_[~d_+*~+ 2_ 2_  2_~2 EL I-"I'L ~- aL'T ']JL 

2 + 2tm~[o-~ + o-~- + ~-+ + ~-~- + o-2+ o-2 + '~a2 + ~'R] 

+ kpo'_[e2L+ z~+  2a~  + 2/3~] 

+~/2 kpO-A[ ( YL + aL)Zt  + ( 6L + fiE)eL] 

- ~/2 kp~'a[ (yL -- aL) eL + (JgL -- aL) ZL] 

+ kpo-_[~ + ~ + 2a~ + 2t~] 
+,/2 kpo-~[ ( ~,~ + aR)'~R + ( ~R +/3R)eR] 

+, /2  kp~',,[('/R - aR) e,~ + (~R -- ~R)~'R] 
2 2 + 2ktyR[o-+ + ~'+ + o -2 + rr 2] 

+ ~/2 kt'r R[ Cr + o- a + O--- O- B + rc + zr A + r zr B ] 

+ ~/2 kteR[--o-+ZrA + O-- ~'B + zr+ o-a -- ~'-O-B] (66) 

Armed with this set of vertices we are now able to calculate the radiative 
corrections. 

We calculate the wave-function renormalization constants from the 
appropriate one loop graphs of Figure 3. For the ~rA propagator there are 
ten intermediate pairs which contribute, namely, (~'a, R), (TrA, S), (o-+, N),  
(o-+, L), (rr+, M),  (r J),  (TL, eL), (6L, 'rL), (jSt, "rL) and (a t ,  eL). Altogether 
they yield through one-loop order 

1 f 4 [ 2 ( b + e ) p  cos 0+I t  sin 0] 2 
z T ' -  1 = ]6-~/2 M~ 

4 [ - 2 ( b + c ) p  sin O+It  cos O] 2 ( k t 2 - 2 c p 2 + 2 r p 2 ) 2  -~ + 
M~ 

p 2 t 2 ( k + 4 c -  4r)2J(o-+, L) -~ + 
2(pZ+2t  z) 

p2t2( k + 4c + 4r)2j(rr+, J)  -+ 
2(pZ+2t  2) 

( p2 + 2 t 2 ) M2(o'+) 

( kt  2 - 2cp 2 - 2 rp2) 2 

(p2 + 2t 2)Mz(~r+) 

+ �89 YL, eL) + J(SL, rL) + J(ClL, rL) + J (aL ,  eL)]} (67) 
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where we use the symbol J(x, y) to denote 

2 2 2 2 2 Mx + My Mx 2 M x M y  
J(x, y) - 2 2 2 My (Mx - My) (Me _ M~)3 in - - ~  (68) 

Inserting the masses given in equation (59) and taking the limit t 2 >> p2 yields 

+b+c+ 
Z]-' = 1 837" 2 327r 2 \ t21 (69) 

The calculation for the ~-_ propagator is analogous. For ~- there are 
five relevant pairs, namely, (Tr , R), (Tr_, S), (Tr+, or+), (L, M),  and (J, N).  
Through one-loop order they yield 

= l__~_~4[2(b+c)p cos O+lt sin 0] 2 
Z 3 1 - 1  167r2[ M~ 

4[-2(b+c)p  sin O+It cos 0] 2 

kZ t 2 kZ t 2 ] 
+ 16r2p2J(Tr+, o'+)+~M~L+~-~j~ (70) 

Again using equation (59) we obtain in the t 2 >>p2 limit 

Z31 = 1 +--~-5-2 + 3--~2 + O (71) 

Hence we find that while Z1 and Z3 are in general unequal in one loop, in 
the t2>>p2 limit their leading terms are equal. Moreover, their nonleading 
terms only differ by the same controllable amount in one loop as p differs 
from 1 in the tree approximation. 

Though the one-loop Goldstone boson mass matrix remains diagonal 
in the tree approximation basis (since the Goldstone bosons stay degener- 
ate), we note that the wave-function renormalization constants have off- 
diagonal terms. Specifically, as can be inferred from the structure of ( V3 + A3) 
given in equation (64), there is a ~'_ to 6R transition in one loop. Evaluating 
Figure 3 for intermediate pairs (J, N)  and (L, M)  yields 

L Fk2pt+k2ptl 
Z-1(~r-'6R)= 32~2LM~ M•] (72) 

which is of  order p / t  in the large-t 2 limit. 
To complete the calculation we evaluate the vertex correction graphs 

of Figures 7 and 8. We find that they give the same Z factors as those of 
equations (67) and (70) above. Since the Feynman diagrams are completely 
different from those of Figure 3 this provides an independent check on our 
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calculations as we discussed in Section 3. Finally, adding all the pole terms 
of Figures 6-8 together gives us the complete one-loop modification to the 
gauge boson mass matrix of  equation (65). The dominant contributions 
come from the modifications of the (O]( V~ - Ai)( V~ - Ai)]0) vacuum polar- 
izations due to Z~ and Z3. The r to 6R transition contributes to the 
(O[(V3-A3)(V3+A3)IO) vacuum polarization to give a term of order 
p(p/t)t, i.e. of  order p2. This modifies the coefficient of  the 
(g sec OwZL + g' tan OwZR)g' cot OwZR term of equation (65) by a factor of  
order p2. The rr_ to 6R transition also modifies the coefficient of  the 
g,2 cot 2 0 w Z  2 term by a factor of  order p2. Thus the 7r_ to 6R transition 
only modifies the ZL, ZR mixing which was already small in tree approxima- 
tion. Hence for the low-lying Weinberg-Salam sector we find that equation 
(65) is modified to 

g2P2[ +~+~][ (wL)2+(wL)2+sec2OwZ2L]  (73) 
M=--~- - -  1 ~rr az~- _l 

up to correction terms of order p2/t 2, so that finally 

 74, 

through one-loop order. 
This is then our desired result with p being close to 1 and with the 

quarks being far from degenerate. It is of  interest to identify why our model 
produces this at first surprising result. We recall that the symmetry of V(X, A) 
of equation (53) is only SU(2)L x SU(2)R •  with the two real or- 
model quartets a and 13 in X being separately irreducible under SU(2)L • 
SU(2)R. Inspection of the electrically neutral piece of  the k Trxx*A*RAR 
term of V(X, A), viz. [using the notation of equations (48) and (54)] 

Tr xx* A~AR 

/3,y 

1 2 2 = ~ [ 2 y R + 2 6 2 +  r2 2 2 + ~ . 1 [ ~ +  + ~ , +  , ~ +  ~r+] 

- { - G [ (  ')/R -{- OlR )'FR + (r -~ ~R)ER][O'+O'A + O'--O"B -]" 'Tl'+q'i'A -}- g'g-g'i'B] 

+ . / 5 [ ( ~ , .  - ~ R ) ~  + ( /3.  - a ~ ) ~ ' . ] [ - ~ +  ~'A + O '_~ .  + ~+O-~ -- ~_  O',,] 

1 2 2 + ~[2a R + 2/3 R + r 2 + e2][~ r2- + ~2 + ~r~ + rr2_] (75) 

shows that at the same time as the TR piece of AR breaks the chiral group 
down to SU(2)t• U(1)ws it also gives a large mass to a particular and 
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unique linear combination of  a and/3, viz. [as exhibited in equation (59)], 

x~ = ( I I , / 2 ) ( ~ o +  ~3, ~, - ~ ,  ~ ,  + ~ ,  ~o+  ~ )  

= (0-+, o-s, 7rs, 7r+) (76) 

while leaving the orthogonal combination 

x A  = ( I I , / 2 ) ( 0 - o -  o"3, ~ ,  + ~ : ,  ~r, - 0-~, ~ o -  ~'~) 

= (O'_, O'A, "/TA, 77"_) (77) 

so far massless. [Essentially the neutrino like piece of  AR couples in the k 
term to 0-0+0"3 ( - t i u )  and not to 0"0-0"3 ( - r id ) . ]  Now as can be seen from 
equations (25) and (56) though XA and Xs are separately irreducible under 
SU(2)L, they are reducible under SU(2)R which mixes them. But, with XA 
being a real quartet of fields it must therefore be irreducible under some 
other SU(2),  SU(2)A , say, with its self-couplings then being SU(2)A 
invariant, even though this SU(2)A is not an invariance of the input chiral 
Lagrangian. Since Xa is the only light Higgs multiplet left in the theory 
following the AR breaking, the effective low-energy symmetry of the potential 
is thus enlarged to SU(2)L • U(1)ws • SU(2)A. Thus by giving a large mass 
to Xs, the AR breaking serves to establish an effective additional SU(2)A 
invariance in the light sector of the theory. Finally then, when we break 
the Weinberg-Salam group down to electromagnetism by giving the 0-0 - 0"3 
term in Xa a vacuum expectation value we reduce the symmetry of the light 
sector of SU(2)L x SU(2)A t o  its "diagonal" SU(2)L+A subgroup. Under 
this residual symmetry the o-a, era, and or_ Goldstone bosons transform as 
a triplet. With the three SU(2)L gauge bosons also transforming as a triplet 
under this SU(2)L+A, w e  thus see that the all order pure XA radiative 
corrections leave p equal to 1. Further, with 0-0-0"3 (which transforms as 
dd) being an SU(2)L+A singlet this effective low-energy symmetry imposes 
no mass degeneracy on the fermions [SU(2)L+R was anyway already broken 
by AR]. Thus the effective SU(2)L+A does just what is required in the light 
XA Higgs sector. 

As well as being renormalized by XA, P is also renormalized by Xs. As 
for the contribution of  the heavy X8 to p we note as follows. All the 
Goldstone bosons which couple to the Weinberg-Salam gauge bosons in 
the tree approximation are contained in XA [see, e.g., equation (64)]. Hence 
the renormalization of Z~ and Z3 due to XB is obtained from a Xs loop 
contribution to the XA propagator (with typical diagrams such as those of 
Figure 6). Such diagrams exist in the translated theory because of induced 
tree level XAX~ trinlinear vertices. These trilinear couplings are of order 
eM2a/Mw sin Ow, where M a denotes the mass of a Higgs boson in the light 
XA. Hence the Xz loop contribution to p gives an effect of  order 
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2 4 2 2 e M A / M w M B  sin 20w, where MB is a typical heavy XB mass. This effect 
is of order (XA)2/(AR) 2 (= p2/t2) SO that equation (74) follows. The difference 
between this result and the pure SU(2)L x U(1)ws invariant two Higgs 
doublet model discussed in the Introduction is that now XB gets its mass 
not only from (XA), but also (and predominantly) from the big (AR), while 
the Weinberg-Salam gauge bosons do not get their masses anymore from 
(XB), but rather from (XA). Indeed, were Ms = M A  = MH our result would 

e M H / M w s i n  20w. reduce to the previously found large effect of order 2 2 2 
With regard to our analysis we note here the multiple role played by 

the right-handed neutrino Majorana mass AR. First of course it produces 
the correct phenomenology in the tree approximation. Second, by giving 
XB a large mass it enables the heavy Higgs doublet to essentially decouple 
from the tree approximation Weinberg-Salam gauge boson mass matrix, 
and then from the radiative corrections to p. Third, by making XB heavy it 
also enables the XA self-couplings to enjoy their full 0(4)  invariance and 
establish an effective custodial SU(2)L+A symmetry in the low-energy sector 
of the theory. Finally, since the SU(2)L+A symmetry is not an invariance 
of the initial Lagrangian, the SU(2)L+A symmetry is itself broken in the 
c o u p l i n g s  Of XA to Xe, AR and AL. Since this is an effect of order ()(A)2/(AR) 2, 
equation (74) immediately follows. 

With regard to phenomenological applications of our mechanism we 
find that not only is p close to i but its deviation from 1 is determined by 
an in principle controllable physical parameter since p2/t 2 is the ratio of 
the strengths of the left-handed to right-handed charged currents, a ratio 
which is known to be small experimentally. Thus we correlate the ratio of 
the strengths of the charged to neutral Weinberg-Salam currents with the 
ratio of the strengths of the left-handed to right-handed charged chiral 
currents. Then simply because SU(2)L • SU(2)R X ( B -  L) is broken down 
to its SU(2)LX U(t)ws subgroup at some large scale it follows that p is 
close to 1. Further, the deviation of p from 1 depends on the relative 
strengths of the dimensionalful scale parameters a and d of the potential 
V()(, A) and is not a f fec tedby  magnitudes of the dimensionless quartic 
coefficients in the Higgs potential. Hence equation (74) will still hold even 
if the Higgs sector is strongly coupled, with the emergence of an effective 
low-energy SU(2)L+A symmetry only being sensitive to the values of the 
scale-breaking parameters and not to the magnitudes of the dimensionless 
quartic couplings. Finally then, because the value of p is only controlled 
by this physically small ratio of the dimensionful scale parameters, it is 
reasonable to expect that the muttiloop radiative corrections will retain the 
effective SU(2)L+A invariance and continue to maintain equation (74) both 
in higher orders and also even in strong coupling. 
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In conclusion therefore we have shown that in a local SU(2)L x 

SU(2)R •  left-right symmetric electroweak gauge theory right- 
handed neutrino Majorana mass breaking generates an effective low-energy 
custodial symmetry which is not an invariance of the input chiral Lagrangian. 
This effective custodial symmetry serves to maintain the relation M w  = 
M z  cos Ow to any required degree of accuracy while leaving the fermion 
mass spectrum completely unconstrained. 
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